Refuting the “Highly expressed” gene argument against Chromosome 2 fusion

A common objection by creationists when presented with the fusion of Chromosome 2 in humans is that the fusion point contains a “highly expressed” gene, known as the DDX11L2. Does this refute the fusion model of Chromosome 2?

No, and while other objections to the fusion event exist, this blog post will specifically cover the DDX11L2 claim.

So, what is the DDX11L2? Surprisingly, and contrary to creationist claims, it is not a gene at all. It belongs to a family of pseudogenes, known as the DDX11L. The interesting thing about the DDX11L family is that they are a telomere specific gene family. Every single one in the human, chimp, and gorilla genome is found parked right next to a telomere. (1.) There is a single exception, the DDX11L2, parked right in the middle, surrounded by other telomere specific sequences. This is a fact that should be a red flag to any creationist, but for some reason they don’t seem to be phased by it.

I contacted geneticist David E. Levin to figure out why this family of pseudogenes are thought of as pseuodogenes.

“All members of the DDX11L family found at telomeric sites are regarded as pseudogenes derived from a functional gene initially named CHLR1, which encodes a DNA/RNA helicase. They are called pseudogenes because they only possess a few of the 26 exons of the functional CHLR1 gene. Thus, most of the gene is missing except for a chunk near the 3’ end. The CHLR1 sequence that is retained in the propagated DDX11L pseudogenes (about 3.5kb out of 25kb) shares 97.5%–98.5% nucleotide identity with the functional CHLR1 gene, supporting the notion that they are all derived from the one functional gene. Thus, they do not appear to code for anything and there is no evidence that the remaining short open reading frames are expressed even as small proteins.”

An enlightening response to say the least.

Considering the fact, as Dr. Levin has pointed out, that these pseudogenes only contain small exons that make up only a fraction of the exons found in the gene they derive from and as such do not seem to code for anything, why is it creationists claim this gene is functional?

This claim comes from Creationist Jeffrey Tomkins. He lays great emphasis on the fact that transcription factor binding has been found throughout the region. But simple binding says nothing about the specificity of binding or how important it is biologically. (2.) Therefore, there is no real reason to consider this gene functional.

However, there are more problems with the claims about the DDX11L2 made by creationists. For one, the vast majority of the recorded transcripts of the pseudogene don’t even span the fusion site! Take a look here at the compact gene diagram:

http://www.ncbi.nlm.nih.gov/IEB/Research/Acembly/av.cgi?db=human&c=Gene&l=DDX11L2

(Hover your mouse over the introns to see the figures)

The fusion site lies within the first intron of detected transcripts B and E, which is the green part. The only thing that seems to differentiate B and E is the slightly different length of the second intron.

If you click on b it shows that it has been detected once in bone marrow.

There have only been two detections of transcript E that actually include the exon on the far side of the fusion site, and they were both found in prostate tissue. The other four detections don’t actually span the fusion site. I’ll discuss the variants that DO cross into the fusion site a little later.

So, even within the detected variants of E alone, the majority does not include the fusion point as one of its introns. The claim this pseudogene always spans the fusion point is becoming a lot less convincing. To get an actual figure on roughly how many variants actually cross the fusion point, we’ll need to do a little math.

Hovering your mouse over the green exon will give you the number of RNA-seq reads. For the green intron, it was sequenced a total of 687 times. The Main intron, however, was sequenced a total of 3200 times. Division gives us approximately 4.7, which can be rounded up to 5. So, roughly, it can be calculated only around 20% of the recorded transcripts actually cross into the fusion point. The vast majority do not.

Now, let’s take a look at the green exon for a moment:

http://genome.ucsc.edu/cgi-bin/hgTracks?db=hg38&position=chr2%3A113601185-113605008&hgsid=445505293_kpxd9k8D5aVBMlVa0T2inHR8dkE1

(Once again, hover your mouse over the colored bits to get the data)

The exon lies within a piece of satellite DNA labelled “Repeat TAR1, family telo”.

If you run a BLAT search for this satellite sequence, you will find that it is a pretelomeric sequence (TAR stands for Telomere Associated Repeat) with nearly identical sequences found on the ends of chromosomes 1, 2, 4, 8, 10, 13, 19 (both ends), 21 and 22.

I’ll humor the creationists for a second. If this was in fact a functional transcript that has always required this exon, it would seem to be quite the coincidence that this exon is in fact part of a larger sequence that, save this one exception, has nearly identical sequences found on the ends of chromosomes.

Yet this still totally isn’t a telomeric remnant. Sure, uh huh, whatever it takes to deny the obvious.

Now let’s move back to transcript variants that do cross over the fusion site. How did they come to be?

First, one must establish whether or not these transcripts arose after the fusion event or during it. Again, we’ll turn to David Levin.(2.)

“If there was recognizable DDX-like sequence on either side of the repeats, this would give the appearance that the gene was there prior to the telomeric sequences. I did a BLAST search of this region some time ago and did not identify any other DDX-related sequences on the far side of the telomeric repeats, supporting the conclusion that the fusion predates the transcript. Moreover, the DDX-like genes all have a similar size, structure and sequences across their exons, as shown Costa et al., 2009, the paper that describes the DDX11L gene. This reveals that the entirety of the recognizable DDX-like sequence resides on one side of the fusion site. Finally, the Costa paper concludes that the family of DDX-like pseudogenes was propagated to many sub-telomeric locations, lending further support to the conclusion that this region was previously a telomere.”

(Emphasis added)

Also, when it was brought to his attention that the green exon lays within a telomere specific signature, he said,

“The most reasonable inference from all of this is that the transcript that reads through the fusion site either represents a new transcription start site, or an old one that was associated with a gene that was truncated by the fusion event, thus producing a chimeric transcript.”

I emailed him to get an explanation of what exactly a new transcription start site meant. Basically, there are areas of the DNA known as transcription factor recognition sequences, or start sites. These are typically six base pairs in length and appear randomly in 1 out of every 4000 base pairs. However, other segments that only differ by a single base pair exist every 200 base pairs. Thus, through mutation of one of these potential start sites, it is easily possible for a new transcription start site to emerge. This could, in essence, essentially be moved over. This easily accounts for why a fraction of the variants cross over the fusion point while most do not.

Back in the compact gene diagram, transcript B is a great example. It looks a lot like it’s been simply moved aside.

Now creationists might try and object to new start sites being able to move genes. But it’s a simple fact it can be done In fact; start sites brought forth by mutation are required in all the transcripts of DDX11L2. Why? Simply, the DDX11L pseudogene family is expressed as RNA, despite the fact that the entire front end of the normal gene (including the promoter and transcription start site) is missing. Therefore, even the shorter transcripts for DDX11L genes must have resulted from mutations to create new start sites.

So, there is a well-known mechanism to account for the few transcripts that cross the fusion point, and these factors also explain the general rule that most transcripts of the DDX11L2 do NOT include the fusion point.

Now overall, what does this the entirety of the presence of the DDX11L2 in chromosome 2 tell us? Well, for one, it tells us it’s likely a fusion because this is a telomere specific pseudogene. Also, the exon on the far side of the fusion point used by only a fraction of recorded transcripts is nestled within telomere specific satellite DNA. Well-understood and observed mechanisms easily account for the percentage of transcripts that cross into the fusion point, so any objection of “How did that fraction get in the site if it wasn’t designed that way?” is null and void.

Overall, the very work pushed forward by Tomkins and other creationists involving the DDX11L2 does a lot more to support the fusion model and does not harm it in any way. The idea of a chromosomal fusion event in our species past is still on very solid ground. I’ll let David Levin sum it up. (2.)

In any event, what we see are two different telomere-specific signatures on either side of the fusion site. This region veritably screams “telomere”.

I rest my case.

 

Citations:

1. http://www.biomedcentral.com/1471-2164/10/250

2.http://sandwalk.blogspot.com/2015/06/creationists-discover-that-human-and.html

Know Your Bones: September 2015

Last month’s challenge led to some great guesses early on. However, the win goes to two of the later commenters. Last month, I was not looking for a specific species, but the name of the group, which makes our first winner Dragan Glas.

 

Ammonites

 

The critters are indeed ammonites (Ammonoidea). However, a minute before Dragan Glas’s guess, red also made a correct guess:

 

Perhaps otherwise – Coilopocerus nova mexicanus

 

The specimen labeled number 3 is a Coilopoceras springeri. The species is incorrect, but being able to nail down a specimen to a genus level from just a single photo is amazing. Specimen number 1 is Romanicera mexicanum and specimen number 2 is Spathites puercoensis.

 

 photo 2015-07-24 13.42.37_zpszpxyqnxe.jpg
(Taken at the New Mexico Museum of Natural History and Science)

 

Ammonites lived from the middle Devonian until the end of the Cretaceous giving them a temporal range of 400 to 66 million years ago. Ammonites are a common fossil in Paleozoic and Mesozoic marine deposits across the world. These critters would have made up a huge amount of the biodiversity of any sea during the Paleozoic and Mesozoic. Most species of ammonites have the spiral shape seen by the three species from last month’s challenge, a few others had spirals that resemble the modern nautilus, others had straight cone shaped shells, and still others had fancy shaped shells (heteromorphs). However, some of the spiral shape shelled ammonites could grow some fancy spikes to ornate their shells as well.

 

Ammonites make great index fossils, because they speciated quickly and distinctly. Thus, identifying a species (or group of species) of ammonite can actually pin down the date of a location. Ammonites can range in size from as small as 23 cm to ~2 meters in diameter. Although ammonite shells are very common, the soft bits of their body are not and very little is known about it. However, ammonites are believed to be carnivorous (like most swimming cephalopods), had a beak, and perhaps ten arms. Ammonites survived a few mass extinction events, including the end Permian extinction (the Great Dying), but finally went extinct during the K-Pg event that also took the non-avian dinosaurs.

 

Moving on to next month’s challenge:

 

 photo 2013-11-12150430_zps94e1d4e0.jpg
(Taken at the Dinosaur Museum and Natural Science Laboratory)

 

Thanks to everyone that is playing and I am hoping to read some more great guesses this month.

Know Your Bones: August 2015

Last month’s challenge sparked a great discussion about the fenestrae found on the skull of some dinosaurs. By the end of it, we had come up with two or three different projects for Isotelus to work on. The discussion was so involved that only one person guessed on the actual challenge.

 

PS The dinosaur in this month’s challenge is Allosaurus. As you said, it was easy! :D

 

Dragan Glas is correct; this critter is Allosaurus.

 

 photo 2014-01-10111750_zps802d443e.jpg
(Taken at the New Mexico Museum of Natural History and Science)

 

Allosaurus fragilis lived during the late Jurassic from 155 to 145 million years ago. The average length of an Allosaurus was 8.5 meters (however, some fragmentary remains have been interpreted as being ~12 meters) and weighed in at ~2.3 tons. Allosaurus possessed a large skull ~84 cm in length, which was lightly built, with ~20 pairs of teeth on both the top and bottom jaw. The teeth of Allosaurus were constantly being replaced throughout the life of the animal, making their teeth very common fossils. The skull also had a pair of small horns above the eye. The purpose of the horns is unknown, but could be related to display, combat against other Allosaurus, or just keeping the sun out of the eye of the animal. Allosaurus possessed short (for its size) forearms that had three fingers, which had strong, large curved claws. The forearms were very powerful and most likely used for hunting.

 

Allosaurus was one of the largest predators of the Jurassic and would have prayed upon a number of different dinosaurs. Allosaurus is one of the best-understood theropods (perhaps dinosaurs) we have ever discovered. In the Cleveland-Lloyd Dinosaur Quarry (Utah, USA) alone there are at least 46 different individuals of Allosaurus discovered. This quarry has individuals ranging from multiple age groups, from specimens that are less than a meter in length on through full-grown adults. This has allowed paleontologists to reconstruct a wonderful life history for Allosaurus.

 

Moving on to this month’s challenge:

 

 photo 2015-07-24 13.40.46_zpsoy9kf1zp.jpg
(Taken at the New Mexico Museum of Natural History and Science)

 

I am not looking for a specific species name this week (but major props to anyone that can do that), but what are these specimens examples of? Good luck to everyone that participates.

Know Your Bones: July 2015

I chose last month’s challenge believing it would be a tricky one. However, I was truly impressed by the answers given, although none of them were correct, but the knowledge of prehistoric critters the readers of this blog possesses impresses me. I truly thought everyone would simply guess Triceratops and move on. As I said, this is not Triceratops, nor any of the ceratopsians given in the comments. Thus, this once again makes me the winner of this month’s challenge for stumping everyone.

 

However, the critter that owned the skull in last month’s challenge was Pentaceratops sternbergii and I will give you five guesses as to what its name means.

 

 photo Dayatthemuseum001_zps5d38b135.jpg
(Taken at the New Mexico Museum of Natural History and Science)

 

Pentaceratops lived during the Cretaceous 75 to 73 million years ago. It is mostly found in New Mexico and Colorado (U.S.). It would have reached a length of ~8 meters and weighed ~5,500 kg. Pentaceratops had five horns, two large horns over the eyes, one small horn over the nose, and two small horns, which protrude sideways out of under the eyes. Pentaceratops also possessed a large frill with two large fenestrae in it. The fenestrae found on the frill were most likely away for cutting down the weight of the skull. Pentaceratops specimens include some of the largest skulls of all terrestrial animals. The frill and horns were most likely used for display, with the possibility of blood being pumped into the frill to change its color slightly. The frill and horns were also probably used in defense as well as jousting between each other.

 

Pentaceratops belongs to the ceratopsian clade. That clade also belongs to the ornithischian clade, meaning that Pentaceratops and the other ceratopsians are more closely related to hadrosaurids and thyreophorans than they are to saurischians. Pentaceratops is believed to be an herbivore and thought to have traveled in large herds similar to modern bovines. Another striking feature Pentaceratops possesses is its sharp beak, which was most likely used for ripping open large and tough vegetation or digging into the ground for tubers.

 

Moving on to next month’s challenge:

 

 photo IMAG0167_zps074c8041.jpg
(Taken at the Denver Museum of Nature and Science)

 

Here is an easy one, since last month’s challenge ended up being so difficult. I am looking for the critter on the left, since the critter on the right was already featured. Good luck to all that participate.

Know Your Bones: June 2015

Last month’s challenge was a stumper. For most of the month, only one person dared to give a guess. Nevertheless, it was not until days before the month ended that Isotelus came in with the correct answer.

 

The Dicynodont Placerias hesternus

 

This critter is indeed Placerias hesternus.

 

 photo 2015-06-05 09.36.01_zps3si6xnjp.jpg

(Taken at the New Mexico Museum of Natural History and Science)

 

Placerias lived during the late Triassic 221 to 210 million years ago. Placerias would have reached a length of ~3.5 meters and weighed in at nearly 1000 kilograms, making it one of the largest herbivores known about during this time. It was also one of the most common animals around during the late Triassic. Placerias had a beak and two tusks, which are common traits for dicynodonts. Both males and females had the same size tusks, thus they would have most likely used them in obtaining food and defense; not necessarily in finding mates. It is thought that Placerias would have had a life style similar to modern hippopotamuses, wallowing in semi-shallow rivers and lakes and spending little time outside of water.

 

 photo 2015-06-05 09.36.59_zps7guvthxk.jpg

(Taken at the New Mexico Museum of Natural History and Science)

 

Even though Placerias lived during the “Age of Dinosaurs” (the Mesozoic), it was not a dinosaur, it is a synapsid. Along with being a synapsid, it is also a therapsid, meaning it is very closely related to modern mammals, but falls outside of the modern mammal clade. Fossil animals, such as Placerias, are found across the world and were key evidence to help establish that at one time in earth’s past, all the continents were of one land mass (Pangaea). Dicynodonts are the second most successful synapsid clade and are only surpassed by mammals in their diversity and longevity.

 

Moving on to next month’s challenge:

 

 photo Dayatthemuseum036_zpsb8b3d5b6.jpg

(Taken at the New Mexico Museum of Natural History and Science)

 

Since last month’s was so difficult, I am hoping this one is much easier.

Know Your Bones: May 2015

Last month’s challenge only lasted a day, because tuxbox was able to guess the correct answer with ease.

 

Dire Wolf

 

This critter is indeed a dire wolf (Canis dirus).

 

 photo 2015-01-09114449_zps2f1b6a2d.jpg

(Taken at the New Mexico Museum of Natural History and Science)

 

Dire wolves lived throughout North America and parts of South America during the Pleistocene 240,000 to 10,000 years ago, most likely evolving in North America. Dire wolves would have been one of the top predators during this time and may have prayed upon a few previous challenges. Dire wolves were most likely pack hunters like their modern wolf counterparts. It was also once thought that they were bone crushers, because of their large and robust size, but lack specialized teeth for such a task.

 

 photo 2013-10-04114325_zpsedf9305f.jpg

(Taken at the New Mexico Museum of Natural History and Science)

 

The average size for dire wolves is ~1.5 meters in length and a weight of 79 kilograms. This makes it roughly the same size as a modern gray wolf (Canis lupus), but far more robust. It would have had more muscles, including larger jaw muscles, and larger canine teeth than modern gray wolves. Dire wolves also had larger skulls, but shorter legs than gray wolves. The more muscular build and larger bones on the dire wolves would have helped it take down the larger prey animals alive during the Pleistocene. However, once those large prey animals started to die out, the smaller gray wolf would have been able to outcompete the dire wolf for the smaller game left in North and South America.

 

Moving on to this month’s challenge:

 

 photo 2013-03-03092212_zps42400bc5.jpg

(Taken at the New Mexico Museum of Natural History and Science)

 

Good luck to all that participate.

Know Your Bones: April 2015

Last month’s challenge appeared to be no challenge to League of Reason’s resident rockhound Isotelus. She gave the correct answer within a day of the blog going up.

 

Edmontosaurus annectens. They’re like the cockroaches of Alberta’s fossil megafauna. Dig a hole and you’re probably going to find at least a piece of one. :P

 

This critter is indeed Edmontosaurus annectens and it is indeed an extremely common fossil.

 

 photo 2015-02-06 11.39.14_zpsd3bsgwtu.jpg

(Taken at the New Mexico Museum of Natural History and Science)

 

Edmontosaurus lived during the Cretaceous 73 to 65.5 million years ago. They ranged widely across western North America, seemingly living along the Western Interior Seaway. Edmontosaurus belong to the hadrosaurid clade, which are popularly called duck-billed dinosaurs. Edmontosaurus belongs to a crestless group of hadrosaurid, unlike a previous “Know Your Bones” challenge. The specimen used in last months blog is actually famous for having what appears to be a bite mark on its tail from a Tyrannosaurus.

 

Edmontosaurus reached a length of ~13 meters (the skull alone was ~1 meter long) and could weigh up to 4 tons, making them one of the largest hadrosaurids to have ever lived. As a means of locomotion, Edmontosaurus were likely able to walk on all fours or on just their hind limbs. Edmontosaurus is also famous for having several skin impressions, which allows us to know what most of the skin of this animal looked like in life. Edmontosaurus had teeth that grew in columns of six teeth, and had around 50 columns in each jaw. The teeth were continually replaced throughout the animal’s life. However, the beak of an Edmontosaurus was toothless and was extended by a keratinous material, much like modern birds.

 

Moving on to next month’s challenge:

 

 photo 2015-01-09133458_zps29f325f9.jpg

(Taken at the New Mexico Museum of Natural History and Science)

 

Good luck, as always.

Know Your Bones: March 2015

Last month’s challenge was extremely easy. Thus, I did not just want the name of the critter, but why it was such an important critter as well. With in a matter of hours Inferno named the critter, and about a day later edited his post to say why it was so important.

 

Archaeopteryx lithographica

EDIT: Why is it important? Because Darwin predicted it. There was no link between birds and dinosaurs, then Archaeopteryx showed up. In Darwin’s lifetime.

 

This critter is indeed Archaeopteryx lithographica and Inferno is correct that it fulfilled a prediction Darwin made within a few years of the prediction being made.

 

 photo 2014-01-10111452_zps436afe7e.jpg

(Taken at the New Mexico Museum of Natural History and Science)

 

Archaeopteryx lived during the late Jurassic, 150 to 145 million years ago in southern Germany. During that time, Europe was located close to the equator and was a large archipelago of islands in a shallow ocean. Archaeopteryx was not a very large animal, reaching 50 centimeters in length. Even though Archaeopteryx is popularly known as the first bird, it has a lot more in common with other theropods (especially the dromaeosaurs). Some of those features are a mouth full of teeth, three un-fused finger bones that included claws on each, a long bony tail, and feathers. One of the features that Archaeopteryx possesses that aligns it with birds is the atypical flight feathers found on its arms and legs. The feathers suggest that Archaeopteryx could at least glide if not outright fly. Scans of the skull of Archaeopteryx shows that it had a larger brain, including a larger vision center, than most other dinosaurs at the time, which also suggest gliding/flight capabilities.

 

The fossil used in last month’s challenge is known as the Berlin Specimen, and it is the most famous specimen of Archaeopteryx (and one of the most famous fossils in the world). However, the reason it is the most famous specimen is because it is the most complete, not because it was the first specimen found. The first skeletal remains of Archaeopteryx were found in 1861 and are known as the London Specimen. The London Specimen is missing a head, so the skull anatomy of Archaeopteryx was not known until the discovery of the Berlin Specimen in 1880, and its discovery further fulfilled Darwin’s prediction.

 

Moving on to this month’s challenge:

 

 photo IMAG0176_zpsd11161e7.jpg

(Taken at the Denver Museum of Natural History and Science)

 

Good luck and have fun.

Know Your Bones: February 2015

Last month’s challenge was extremely hard. Once again, the bone fragments cause the most problems for the participants. However, Isotelus came  the closest with:

 

At least in the photo it doesn’t look to be very old relatively speaking, so I’m going to guess it’s an Ice Age-ish horn core and partial skull of an ancient bovid, possibly Bison of some sort. Size is hard to assess definitively, but I’m guessing it’s not a modern Bison or B. latifrons. B. priscus or antiquus?

 

Isotelus was correct in that this is an Ice Age critter; it was indeed a horn core and partial skull of a Bison. Still, she did not think it was a Bison latifrons when this partial skull is indeed from B. latifrons. Nevertheless, I believe that if I used a scale in that photo, she would have come up with the correct answer.

 


(Taken at the New Mexico Museum of Natural History and Science)

B. latifrons lived throughout North America 500,000 to 20,000 years ago during the Pleistocene. B. latifrons is the largest species of Bison (and possibly bovid) known. An adult male was ~2.5 meters at the shoulder and weighed over 2,000 kilograms. From tip to tip (including the outer sheath that grew over the bone core), B. latifrons had horns that measured ~2.4 meters across.

 

B. latifrons inhabited mostly woodlands and open forests, which means it was most likely a browser, feeding off shrubs and trees, unlike modern Bison. B. latifrons most likely used its large horns defending itself from predators and fighting for territory and mates. B. latifrons is not only possibly the largest bovid, but also one of the largest artiodactyls to have ever lived (on land).

 

Moving on to thiqs month’s challenge:

 

 photo 2014-01-03095825_zpsccbfb783.jpg
(Taken at the New Mexico Museum of Natural History and Science)

This one should be an easy one, so easy in fact that I would like to know the name of the critter and why it is so important.

Why I am a Feminist

There have been, in the past, a few discussions about what feminism is and why or why not one should be a feminist. I will try to lay out why I think the discussion is purely semantic and why we should all be feminists.

 

Part 1: The meaning of feminism

The first part we need to discuss is a definition of feminism. Wikipedia defines feminism as follows:

Feminism is a collection of movements and ideologies that share a common stated aim: to define, establish, and defend equal political, economic, cultural, and social rights for women. This includes seeking to establish equal opportunities for women in education and employment.

Note that feminism aims for equal rights, not special rights. The underlying assumption is that women currently have fewer rights in many areas. Establishing this will be the second step. For now, let’s take a look at another definition. In her HeForShe-speech, Emma Watson put it thus:

For the record, feminism by definition is: “The belief that men and women should have equal rights and opportunities. It is the theory of the political, economic and social equality of the sexes.”

This goes a step further: while one could argue that the Wikipedia definition suggests raising rights for women (while not raising those of men), Emma Watson’s definition makes it clear that both sexes should have “equal rights and opportunities”. This is an important point: in some few areas, men are at a disadvantage to women. In Austria, a woman is more than twice as likely to receive custody of a child, even if her ability to do so is in grave doubt.

 

Part 2: Accepting that there is a problem

Having accepted that feminism isn’t “wanting to subjugate all men” or something equally silly, we can move on to establishing that there is a problem.

Looking at only one of literally thousands of possible pieces of evidence, we find that out of 535 members of Congress (US), only 20 are women. The reasons put forward are manifold, but it seems that “family planning” plays no role here. Instead, it is thought that women doubt themselves more than men and are less likely to consider running for office. The evidence does not suggest that women are actually worse.

This undermining of women’s self-perception lies, I believe, at the heart of the issue. Sadly I can’t find the article so you’ll either have to believe me or not, but in a (New York Times?) article a few years back, an author asked women about their career choices. The overwhelming majority cited their self-perception (“I’m not good enough,” etc) as the main problem. This was (unconsciously) made worse by their mentors, who would encourage their male counterparts because they actively sought attention, while the females at the respective jobs didn’t actively search for encouragement (“If I’m good enough, I’ll be told”) and consequently didn’t feel like they were good enough.

I believe that perhaps the largest task the feminist movement faces is to encourage people to throw away their conscious and unconscious biases. We know that they exist when it comes to race. Implicit Association Tests are routinely used to seeing what sort of bias a person (or group of people) has against a different group of people. (White vs black, national vs “immigrants”, etc). To mention but one 2012 study, people were more likely to think of men in presidential terms than women.

When following instructions to sort images rapidly, the average person found it easier to pair words like “president”, “governor”, and “executive” with male names and words like “secretary”, “assistant”, and “aide” with female names. In other words, many people had great difficulty associating women with leadership.

This is powerful evidence that women are thought of as less capable and it might be part of the reason why women choose not to go into political careers. (Or scientific careers, etc.)

I could have also mentioned other pieces of evidence: rape victims by gender, pay by gender, etc, etc. It doesn’t paint a very equal picture.

 

Part 3: Hostile opposition on both sides

The most remarkable thing about feminism, in my opinion, is the staunch opposition to it from both men and women. I can sort of understand the male side: long-held rights and special treatment will be lost if the cause succeeds. What I can’t understand is the opposition of females.

A typical and very moderate opposition (or rather, counterargument) to feminists is typified by this picture:

 

The content of the picture is true. The jobs mentioned are far skewed in the “favour” of females. I say “favoured” because I mean there are more females in those jobs than males, not that those jobs are great. This is also the false imagery this picture evokes: “Feminists are fighting to get into jobs like engineering and programming even though they have such superb jobs like kindergarten teachers, nurses and flight attendants.”

This is false, and it’s trivial to prove false. In general, programming and engineering are well-paid jobs with fairly high social standing, even though the path is a difficult one. Kindergarten teachers, on the other hand, are regarded as little better than better playmates for the children of rich people. In Austria, a kindergarten teacher can be happy to make one-fifth more (≈1000€) than the absolute minimum (≈800€), below which you get help from the state. This isn’t much different in other countries. While the numbers may be wrong, salary.com lists the median annual wage of a flight attendant as ≈867,000$ and that of a kindergarten teacher as ≈853,000$ (both with little to no chance of rising through the ranks), while even an entry-level engineer can make between ≈850-64,000$, with the possibility of making ≈8100,000$+ at the end of the career.

Is it any surprise that men don’t typically want to become kindergarten teachers? Men are usually encouraged to find a job at or above their qualification, so kindergarten teachers and the like are “left over” for women. As someone working in education, I can assure you that men are welcomed with open arms in any education-related job. We are currently seven men in a team of about forty. My principal specifically wanted more men, as there were only four men in a team of forty before. Six people joined the team, three were men. How is that not fair? More than that, it is extremely unfair, considering about twenty contenders were women and only five were men.

This was but one of the many bogus objections I could have looked at.

 

In any case, let’s take a look at the other side:

I’m using random pictures I found on the web searching for “I don’t need feminism.” Most of the arguments are as confused as this one.

The argument isn’t that women are inherently weak. The argument is that men are (consciously or unconsciously) oppressing women in one form or another. It would have been equally wrong to claim, fifty years ago, that “I don’t need black rights because black empowerment implies that we blacks are currently weak.” No, it simply meant that white people were wielding all the power and didn’t give black people a chance to show just how strong they were.

 

I will only link to the next three, because they offer insight into the great misapprehensions surrounding feminism:

Person 1 claims that “feminism = not wanting men to compliment you“, which may be true for a vocal minority, but certainly isn’t true for the movement as a whole. It also ignores pretty much everything feminists fight for.

Person 2 claims that “feminism = ignoring the inequalities faced by men“, which I showed to be false in the definition.

Person 3 claims that “feminists demand entitlements instead of working for the money” even though the wage gap should be obvious to all thinking people.

Every time I see one of these “I don’t need feminism” pictures, I notice that it was feminists who achieved the rights of the women opposing feminism to do the things they now take for granted. Let’s consider this for a second: working in every job? Feminism, check. Being able to vote? Feminism, check. Being able to dress the way you like? Feminism, check.

Why are some women fighting so hard against the very movement that has achieved so much and is trying to achieve so much more for them?

 

Part 4: Why I am a Feminist

There are many reasons I could put forward and all of them would be valid reasons. I could let Joss Whedon speak for me. I could let this woman speak for me who rightly points out that society teaches women “Don’t get raped” instead of teaching men “Don’t rape.”

The truth of the matter is that there isn’t one big reason why I’m a feminist: there are many reasons, all of them equally important. But if I had to pick one reason, then it would be this: “I am a feminist because I support perfect equality of the sexes. Without this first step, how will we achieve equality for smaller, less vocal minorities?”